Гидродеоксигенация биомассы для повышения характеристик биотоплива
Гидродеоксигенация под высоким давлением является более предпочтительным методом производства высококачественного биомасла, которое сопоставимо по цене и теплоте сгорания с сырой нефтью
Биотопливо привлекает внимание как альтернативный источник энергии. Оно производится в течение относительно коротких циклов, внося незначительный вклад в загрязнение окружающей среды. Увеличение производства биотоплива может быть достигнуто с помощью быстрого пиролиза, метода, который включает в себя быстрый нагрев сырья в реакторе с псевдоожиженным слоем в отсутствие кислорода примерно до 500⁰C менее чем за одну секунду. Пары биомасла покидают реактор, а твердые частицы и полукокс удаляются.
Далее пары конденсируются и получается жидкое биомасло - сырой продукт с высоким содержанием кислорода, низкой стабильностью и теплотворной способностью. Чтобы удалить кислород и сделать продукт похожим на сырую нефть, он нуждается в дальнейшей переработке. Среди методов удаления кислорода из биомасла катализ считается одним из самых эффективных. Существует два основных метода повышения качества биомасла до промышленного уровня: гидродеоксигенация под высоким давлением (ГВД) и быстрый каталитический пиролиз с цеолитами.
Используя цеолиты в качестве катализаторов, процесс деоксигенации можно осуществлять при атмосферном давлении, поскольку не требуется водород. Однако низкое содержание водорода приводит к низкому соотношению H/C, что делает масло низкосортным, с теплотворной способностью примерно на четверть меньшей, чем у сырой нефти. ГВД является более предпочтительным методом производства высококачественного биомасла, которое сопоставимо по цене и теплоте сгорания с сырой нефтью.
В процессе гидродеоксигенации под высоким давлением из биомасла извлекается кислород, повышая качество топлива. Кроме того, при гидрировании под высоким давлением углерод не осаждается на поверхности катализатора, что улучшает работу реактора. В реакции используются традиционные катализаторы гидродесульфуризации, такие как Cobalt MoS₂/Al₂O₃, или металлические катализаторы, такие как Pd/C. Каталитическая переработка биомасла представляет собой сложную реакционную процедуру из-за большого разнообразия соединений в сырье. В целом реакция является экзотермической с выделением теплоты порядка 2,4 МДж/кг.
Сульфидные/оксидные катализаторы
Кобальт и никель передают электроны атомам молибдена, ослабляя связь между молибденом и серой, которая становится активным центром со свободной орбиталью. При выходе кислорода из биомасла, сера протонирует присоединенную молекулу, образуя карбокатион, который в дальнейшем подвергается разрыву углеродной и кислородной связи. Кислород выходит, когда образуется вода.
Чтобы механизм работал, кислородная группа, которая образуется на участке металла, должна быть удалена в виде воды. После продолжительной работы катализатор переходит из сульфидной в оксидную форму, при которой каталитическая активность снижается. Чтобы этого избежать, в систему добавляют соединение H₂S, которое регенерирует сульфидные участки. Тем не менее, влияние серы на стабильность катализатора в настоящее время неизвестно и требует дальнейшей оценки.
Катализаторы из переходных металлов
Катализаторы на основе благородных металлов Ru, Rh, Pd очень эффективны при синтезе биотоплива, но высокая стоимость делает их непригодными для широкого и длительно применения. Более дешевые альтернативы, включая Pd/C и никель Ренея эффективны в сочетании с Nafion (сульфированный тетрафторэтилен)/SiO₂, однако их эффективность количественно оценивалась только в узких экспериментах с соединениями с низким содержанием фенола.
Будущие направления
Разработка и усовершенствование катализаторов, понимание процессов образования кокса, влияния примесей на биоактивность и производительность различных катализаторов необходимы, чтобы оптимизировать технологические процессы и приблизить их к промышленному использованию.
Источник: Stanford University
Комментарии ()